4,130 research outputs found

    Comments on "The Role of the Central Asian Mountains on the Midwinter Suppression of North Pacific Storminess" - Reply

    Get PDF
    We thank Chang and Lin for their thoughtful and constructive comments on our study (Park et al. 2010). In Park et al. (2010), we did not explicitly state that the topography-forced stationary waves are the direct cause for the reduced downstream transient eddy kinetic energy (EKE). The response of stationary waves to topography may saturate even with a relatively small mountain (Cook and Held 1992); furthermore, their magnitudes are much smaller than thermally forced stationary waves (Chang 2009; Held et al. 2002). Instead, we suggest that quasistationary waves generated by the central Asian mountains may strongly affect North Pacific storminess by changing the year-to-year variability of westerly winds over the eastern Eurasian continent. Observational analyses indicate that the midwinter suppression of North Pacific storminess does not occur every year. Some years experience stronger and more meridionally confined zonal winds over the western North Pacific, leading to stronger midwinter suppression (Harnik and Chang 2004; Nakamura and Sampe 2002)

    Cauchy problem for the Boltzmann-BGK model near a global Maxwellian

    Full text link
    In this paper, we are interested in the Cauchy problem for the Boltzmann-BGK model for a general class of collision frequencies. We prove that the Boltzmann-BGK model linearized around a global Maxwellian admits a unique global smooth solution if the initial perturbation is sufficiently small in a high order energy norm. We also establish an asymptotic decay estimate and uniform L2L^2-stability for nonlinear perturbations.Comment: 26 page

    Novel duality in disorder driven local quantum criticality

    Full text link
    We find that competition between random Kondo and random magnetic correlations results in a quantum phase transition from a local Fermi liquid to a spin liquid. The local charge susceptibility turns out to have exactly the same critical exponent as the local spin susceptibility, suggesting novel duality between the Kondo singlet phase and the critical local moment state beyond the Landau-Ginzburg-Wilson symmetry breaking framework. This leads us to propose an enhanced symmetry at the local quantum critical point, described by an O(4) vector for spin and charge. The symmetry enhancement serves mechanism of electron fractionalization in critical impurity dynamics, where such fractionalized excitations are identified with topological excitations

    The Mechanical Impact of the Tibetan Plateau on the Seasonal Evolution of the South Asian Monsoon

    Get PDF
    The impact of the Tibetan Plateau on the South Asian monsoon is examined using a hierarchy of atmospheric general circulation models. During the premonsoon season and monsoon onset (April–June), when westerly winds over the Southern Tibetan Plateau are still strong, the Tibetan Plateau triggers early monsoon rainfall downstream, particularly over the Bay of Bengal and South China. The downstream moist convection is accompanied by strong monsoonal low-level winds. In experiments where the Tibetan Plateau is removed, monsoon onset occurs about a month later, but the monsoon circulation becomes progressively stronger and reaches comparable strength during the mature phase. During the mature and decaying phase of monsoon (July–September), when westerly winds over the Southern Tibetan Plateau almost disappear, monsoon circulation strength is not much affected by the presence of the Tibetan Plateau. A dry dynamical core with east–west-oriented narrow mountains in the subtropics consistently simulates downstream convergence with background zonal westerlies over the mountain. In a moist atmosphere, the mechanically driven downstream convergence is expected to be associated with significant moisture convergence. The authors speculate that the mechanically driven downstream convergence in the presence of the Tibetan Plateau is responsible for zonally asymmetric monsoon onset, particularly over the Bay of Bengal and South China

    The D0 same-charge dimuon asymmetry and possibile new CP violation sources in the BsBˉsB_s-\bar{B}_s system

    Full text link
    Recently, the D0 collaboration reported a large CP violation in the same-sign dimuon charge asymmetry which has the 3.2σ3.2 \sigma deviation from the value estimated in the Standard Model. In this paper, several new physics models are considered: the MSSM, two Higgs doublet model, the recent dodeca model, and a new ZZ' model. Generally, it is hard to achieve such a large CP violation consistently with other experimental constraints. We find that a scheme with extra non-anomalous U(1)' gauge symmetry is barely consistent. In general, the extra ZZ' gauge boson induces the flavor changing neutral current interactions at tree level, which is the basic reason allowing a large new physics CP violation. To preserve the U(1)' symmetry at high energy, SU(2)L_L singlet exotic heavy quarks of mass above 1 TeV and the Standard Model gauge singlet scalars are introduced.Comment: 12 pages, 13 figure

    Measurement of statistical evidence on an absolute scale following thermodynamic principles

    Full text link
    Statistical analysis is used throughout biomedical research and elsewhere to assess strength of evidence. We have previously argued that typical outcome statistics (including p-values and maximum likelihood ratios) have poor measure-theoretic properties: they can erroneously indicate decreasing evidence as data supporting an hypothesis accumulate; and they are not amenable to calibration, necessary for meaningful comparison of evidence across different study designs, data types, and levels of analysis. We have also previously proposed that thermodynamic theory, which allowed for the first time derivation of an absolute measurement scale for temperature (T), could be used to derive an absolute scale for evidence (E). Here we present a novel thermodynamically-based framework in which measurement of E on an absolute scale, for which "one degree" always means the same thing, becomes possible for the first time. The new framework invites us to think about statistical analyses in terms of the flow of (evidential) information, placing this work in the context of a growing literature on connections among physics, information theory, and statistics.Comment: Final version of manuscript as published in Theory in Biosciences (2013

    Superconductivity from a non-Fermi liquid metal : Kondo fluctuation mechanism in the slave-fermion theory

    Full text link
    We find new mechanism of superconductivity beyond the spin-fluctuation theory, the standard model for unconventional superconductivity in the weak coupling approach, where Kondo fluctuations result in multi-gap superconductivity around an antiferromagnetic quantum critical point of the slave-fermion theory. Fingerprints of the hybridization mechanism are two kinds of resonance modes in not only spin but also charge fluctuations, originating from dwaved-wave pairing of conduction electrons and spinless holons, respectively, thus differentiated from the spin-fluctuation mechanism. We show that the ratio between each superconducting gap for conduction electrons Δc\Delta_{c} and holons Δf\Delta_{f} and the transition temperature TcT_{c} is 2Δc/Tc92\Delta_{c} / T_{c} \sim 9 and 2Δf/TcO(101)2\Delta_{f} / T_{c} \sim \mathcal{O}(10^{-1}), remarkably consistent with CeCoIn5CeCoIn_{5}
    corecore